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This study evaluated the performance of HOLODETECT HiRes + FLUORS3, a laboratory instrument designed for
detecting and counting small particles or cells in fluids using fluorescence. The test species were Haematococcus
pluvialis and Chlorella sorokiniana because of their industrial importance in the functional food markets, and
because they have been identified growing in co-culture, especially when the goal is to produce H. pluvialis.
Initial trials focused on optimising the operating conditions to ensure accurate and reproducible measurements.
The equipment demonstrated a low coefficient of variation (<5 %) for all the different determinations. Due to
cell overlap, sample dilution was necessary in dense cultures prior to analysis. A second set of trials aimed to
develop models (i) to identify the cell concentration in monocultures and co-cultures, and (ii) to determine the
relative abundance of the two test species in mixed cultures. The models that were developed were able to
provide cell count results comparable to those obtained using a Neubauer counting chamber. However, the
model development step proved to be important, as different modelling approaches led to different results with
some models overestimating and others underestimating the total cell count. Similarly, the system accurately
quantifies the relative abundance of C. sorokiniana and H. pluvialis cells in cultures with different cell concen-
tration ratios.

1. Introduction generally around 10 (Villar6-Cos et al., 2024), while the latter is pro-

duced using sea salt, as it can grow well in media with a conductivity

Microalgal production has attracted significant interest across
various industries due to the photosynthetic nature of microalgal
biomass, and its potential applications. Today, several microalgae-based
metabolite production processes have achieved commercial success; for
example, phycocyanin from Arthrospira platensis Gomont, 1892 and
B-carotene from Dunaliella salina (Dunal) Teodoresco, 1905 are
commercially available.

Microalgae are mainly produced autotrophically using open bio-
reactors, with raceway ponds being the most used design. Raceways
have been used for over 50 years to produce both A. platensis and
D. salina, taking advantage of the fact that the growth conditions for
these microalgae are unsuitable for most competing species. The former
is produced using high concentrations of sodium bicarbonate, with a pH

higher than 150 mS em! (Colusse et al., 2020). Producing other strains
in raceway reactors is challenging because of the appearance of un-
wanted fast-growing competing species that can dominate the culture.
For example, a metagenomic analysis showed that an unwanted
microalga was the most abundant in an open bioreactor that had been
inoculated with Scenedesmus almeriensis approximately one month
earlier (Villaro et al., 2022). Even reactors inoculated with extremophile
species and strains can be contaminated with unwanted microalgae or
with algal predators such as protozoa, rotifers, and ostracods. For
example, Alkalimonas sp. and Lentimonas sp., as well as an unclassified
metazoan, have been found in cultures of A. platensis (Villaro et al.,
2023).

The appearance of contaminating species in microalgal cultures has
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been overlooked in the scientific literature. Despite the presence of algal
predators in large cultures being recognised since the 1960s, most of the
works published to date have been carried out using laboratory-scale
reactors. At the laboratory-scale, the culture conditions can be easily
controlled (e.g., by autoclaving the culture medium), and the appear-
ance of competing strains and/or algal predators is not generally a
problem. However, over the last two decades, several microalgal-based
production processes have been upscaled and the presence of predators
and competing microorganisms has become an important challenge for
microalgae producers.

Chlorella vulgaris Beijerinck, 1890 and Chlorella sorokiniana Shihira
and Krauss, 1965 are microalgae of industrial importance since they can
be used as human food. They are approved as food by the FDA in the US
and by EFSA in the EU and there are several products containing
Chlorella sp. already available on the market. Despite being fast-growing
microorganisms, they are not extremophiles so producing them in open
systems is challenging. Moreover, because of their high growth rate,
Chlorella sp. can overtake cultures or other species. For example,
Chlorella sp. cells in Haematococcus pluvialis Flotow, 1844 cultures can
prove problematic when the goal is to produce astaxanthin. Other spe-
cies, such as Chlamydomonas reinhardtii Dangeard, 1888, also act as bi-
otic contaminants of H. pluvialis cultures (Yu et al., 2022). Various
methods have been investigated to stop or limit the growth of unwanted
microorganisms. For example, pyraclostrobin-based fungicides and the
anionic surfactant sodium dodecylbenzene sulfonate have been inves-
tigated to control fungal contaminants in cultures of Scenedesmus
dimorphus (Turpin) Kiitzing, 1834 and Graesiella sp. Kalina and
Puncocharova, 1987, respectively (Ding et al., 2020). Adjusting the pH
has also been assessed as a method to control the growth of unwanted
microorganisms in cultures of H. pluvialis (Hwang et al., 2019) and a
combination of botanical pesticides was investigated for exterminating
rotifers in cultures of A. platensis (Huang et al., 2014).

To implement effective contingency measures and combat unwanted
microorganisms, it is crucial to first identify the contaminant. The
sooner the contaminant is detected, the greater the chances of control-
ling its growth. Therefore, it is important to develop and implement
online monitoring tools that can detect the appearance of unwanted
microorganisms, including microalgae, in industrial cultures. Various
methods are now being studied, including Al-based models, to detect
contamination based on spectrophotometry (Gonzalez-Hernandez et al.,
2025). In this study, the authors evaluated the performance of HOL-
ODETECT HiRes + FLUOR3 (Holodetect Instruments Ltd., Budapest,
Hungary), a laboratory instrument for detecting and counting small
particles or cells in fluids using fluorescence. The test strains were H.
pluvialis and C. sorokiniana because of their industrial importance and
because they have both been identified growing in co-culture when the
goal was to produce one or the other.

2. Materials and methods
2.1. Microalgal cultures

The test species belonged to the genera Haematococcus and Chlorella.
For Haematococcus, the species used was H. pluvialis, sourced from
several culture collections, including 1360B BEA, BMCC 673, Algaria
(Italy), SAG 192.80, and CCCryo 096-99. The species of Chlorella that
was used was C. sorokiniana that had been adapted to seawater and
collected from cultures grown and cultivated under a range of conditions
in a variety of photobioreactor systems, including tubular reactors. The
two species were subsequently grown in 1 L controlled bubble columns
(pH 8.0; 25 °C) at a constant aeration of 0.2 v/v/min and photon irra-
diance of 350 pmol photons~(PAR)~m’2-s’l measured using an US-SQS
spherical quantum sensor (Walz, Effeltrich, Germany). Light was pro-
vided using 13.3 W LEXMAN LED tubes (Leroy Merlin, Madrid, Spain).
The culture medium was prepared using 0.90 g L™} NaNOs, 0.14 g L™}
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KHyPO4, 0.18 g L™! MgSO4 and 20 mg L' Karentol® Mix Super
(Kenogard, Barcelona, Spain), a commercial micronutrient mixture
(Morillas-Espana et al., 2020). The cultures were diluted when needed
using fresh culture medium. The biomass concentration was calculated
gravimetrically. Briefly, 30 mL of culture was filtered through pre-dried
0.45 pm filters and washed with 60 mL of distilled water to remove the
salts then dried in an oven at 80 °C for 24 h following UNE-EN 17605
(UNE, 2022). In addition, the cell concentration was calculated using a
Neubauer counting chamber (NCC) and a Leica DM 750 microscope
coupled with a Flexacam i5 camera using Enersight software (Leica
Microsistemas, Barcelona, Spain).

2.2. High-resolution holographic reconstruction combined with
fluorescence microscopy

The first set of trials evaluated the performance of the Holodetect
HiRes + Fluor3 (HF3) device in detecting and classifying microalgal
cells, and to determine whether sample dilution was required prior to
analysis.

The system integrates digital holographic microscopy (DHM),
providing a holographic resolution of 600 nm, with multi-wavelength
fluorescence microscopy (excitation at 405 nm, 450 nm and 532 nm).
In recent years, this combined approach has been explored for micro-
algae characterisation, and enhanced methods have been developed
which capture both morphological and biochemical features simulta-
neously (Yourassowsky et al., 2024). Liquid samples were analysed
within a flow-through cuvette at a depth of 200 pm and at a flow rate of
between 3.6 pL min~! and 18 uL min~! depending on the culture's cell
concentration. The HF3 technology captures the entire 200 pm depth of
a sample in a single holographic image, eliminating the need for optical
refocussing and allowing the reconstruction of all objects within the
detectable size range of 3 pm-75 pm. The flow cell used to pass the
sample through the system is a rectangular glass slide with a central
tube. The slide is arranged in a vertical position with a silicone tube
affixed at both ends and connected to a peristaltic pump. The sample is
passed through the flow cell, where two cameras record the images, with
the holographic image of the sample having to be registered with the
fluorescence image. Instrument-level parameters, such as camera
magnification, rotation, and laser light distribution, must be optimised
during the equipment set-up. Slight dynamic offsets can be introduced
by operational factors. This is a common challenge in systems that
integrate fluorescence and imaging. For instance, the FlowCAM device
incorporates a laser in fluorescence triggered mode, which requires
calibration of the gain and threshold settings, among others (Chen et al.,
2023; Jaffari et al., 2024).

To ensure the accuracy of the HF3 equipment, an automatic cali-
bration routine is performed prior to each use. For this calibration, a
sample of the fresh culture is introduced, allowing the system to auto-
matically calculate and compensate any offset. This ensures the correct
overlap between the reconstructed holographic object and its corre-
sponding fluorescence signal.

To determine the optimum cell concentration to allow accurate
counting, samples of C. sorokiniana and H. pluvialis cultures were ana-
lysed using both HF3 and NCC to compare reliability and reproduc-
ibility. Each culture was serially diluted until the system could
accurately distinguish individual cells, even in cases of partial cell
overlap. At each dilution step, cell concentration was measured using
both methods, and dry weight measurements was also measured. This
process was repeated until the cell concentration became too low for a
reliable counting threshold using either method.

Furthermore, the minimum number of objects required to achieve
reproducible results was determined by modifying the system's “number
of objects to be measured”, ranging from 375 to 6000 objects per mea-
surement. Subsequent counts were performed using NCC for compara-
tive analysis.
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2.3. Model generation

HF3 employs deep neural networks (DNNs) implemented in PyTorch
(v2.2.0 with CUDA 11.8 support) for automated classification (Paszke
et al.,, 2019) and trained using a staged few-shot learning approach
(Wang et al., 2023). Three different models were developed in this
study. Two of them were trained using monocultures of C. sorokiniana
and H. pluvialis separately. The use of pure cultures to generate the
model ensured accurate cell labelling with this approach, as no other
microalgae were present. To create the database, only the target species
was manually annotated in each case. This resulted in two
species-specific models, one for C. sorokiniana and the other for H. plu-
vialis, in which all non-target particles were labelled as “others”. A third
model was generated by labelling both species independently within the
same training dataset, allowing direct discrimination between them.

For each model, initial training was performed on small, annotated
datasets (approximately 10 objects per class). A preliminary model was
trained and used to pre-classify additional detected objects, employing
semi-supervised iterations where preliminary model predictions were
manually corrected and reintroduced into the training set. This allowed
the training database to be expanded and refined. The built-in annota-
tion tool facilitated labelling based on holographic morphology and
fluorescence signals. This semi-supervised iterative approach helped to
improve classification accuracy while minimising manual labelling
effort.

The final annotated datasets were randomly divided into training
(70 %), validation (15 %), and test (15 %) sets, with the only require-
ment being that each set contain an equal number of elements of each
class to avoid bias in the training. The validation set was held out during
training to prevent overfitting, with model training automatically
stopping when validation accuracy plateaued. The DNN architecture
incorporated both holographic and fluorescence data, with inputs
standardised to the same size (128 pixels), since the model has a uniform
and invariable input size.

2.4. Model validation

Model validation was conducted using pure monocultures of C. sor-
okiniana and H. pluvialis (distinct from the samples used for model
training), with cell concentrations accurately determined using the NCC.
The use of pure cultures ensured that no unwanted species interfered
with the model specificity assessment. From these quantified cultures,
six standardised cellular mixtures were prepared: 10 % C. sorokiniana
(90 % H. pluvialis), 25 % C. sorokiniana (75 % H. pluvialis), 50 % C.
sorokiniana (50 % H. pluvialis), 75 % C. sorokiniana (25 % H. pluvialis),
90 % C. sorokiniana (10 % H. pluvialis), and 100 % of each species. These
mixtures were designed to represent a range of contamination levels,
from highly contaminated to pure cultures, simulating the contamina-
tion scenarios that may be present in commercial microalgal culture
systems.

Each mixture was analysed using all three classification models to
evaluate their performance under the full range of species abundance
ratios. The number of cells analysed per sample corresponded to the
previously established optimal object count to ensure accuracy and
reproducibility across replicates. The aim was to evaluate the ability of
each model to correctly identify, quantify and classify both species over
a range of relative abundances. The model outputs were compared with
the expected ratios derived from manual cell counts. This validation
procedure enabled a comprehensive assessment of each model's gen-
eralisability and its ability to detect and quantify target species in mixed
cultures.

2.5. Statistical analysis

Data were analysed using a one-way analysis of variance and a
Fisher's LSD post hoc test (p < 0.05) using Statgraphics Centurion v19
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(Statgraphics Technologies Inc., VA, USA) software.
3. Results and discussion

As previously explained, the presence of contaminating microor-
ganisms such as microalgae in Chlorella sp. and Haematococcus sp. cul-
tures is a common issue that poses a challenge at the commercial scale.
These microorganisms may present a health risk or could compromise
the quality of the product produced. For instance, in the case of Hae-
matococcus sp., growth of competing species can lead to reduced
astaxanthin production. When this occurs, it is essential to implement
control measures, such as filtration, to eliminate or limit the growth of
the undesired contaminating species. The earlier these measures are
implemented, the better. Therefore, the adoption of online monitoring
tools capable of identifying different species or microorganisms is
crucial. In this study, C. sorokiniana and H. pluvialis were used as model
organisms, and the HF3, was validated for the first time.

3.1. Equipment calibration

HF3 utilises digital holographic microscopy and artificial intelli-
gence to detect, classify and count cells and objects ranging in size from
3 pm to 75 pm. The primary objectives of the trials in this initial study
were (i) to assess the device's ability to detect and classify cultures with
different cell concentrations, and (ii) to determine the minimum number
of reads required to obtain reproducible results.

The first objective is particularly important given that, in concen-
trated cultures, some cells may overlap, requiring sample dilution before
readings to ensure accurate analysis. This was observed in previous
studies where overlapping cells or cell aggregates limited the accuracy
of techniques such as flow cytometry, plate counting, or electron mi-
croscopy (Di Caprio, 2020). Cultures containing different relative cell
concentrations of C. sorokiniana and H. pluvialis were analysed using
both HF3 and NCC. The results are shown in Fig. 1. For the C. sorokiniana
cultures, a positive correlation was observed between the cell concen-
tration assessed using HF3 and NCC (p < 0.05; 0.9773). The biomass
concentration ranged between 0.00 g L™ and 0.06 g L™%; higher cell
concentrations led to cell overlap and to larger differences between the
two counting methods. In turn, H. pluvialis could be counted at higher
cell concentrations using HF3, but with minor differences observed be-
tween the results obtained using HF3 and NCC at a biomass concen-
tration of approximately 1 g L™1. In this case, a positive correlation was
observed between the cell concentration calculated using HF3 and NCC
in cultures with biomass concentrations ranging from 0.0 g L™! to
11g Lt (p < 0.05; 0.9889). Despite the biomass concentration (g-L_l)
being higher, the cell concentration (cells-L™Y) in both cultures was of
the same order of magnitude. The reason for this is the difference in cell
biovolume because the diameter of C. sorokiniana is between 2 pm and
5 pm, while the diameter of H. pluvialis is between 10 pm and 60 pm
(Baroni et al., 2019). The need to dilute denser cultures is also required
in other cell counting methods. Similarly, in a previous study, the au-
thors reported greater noise in the data computed from images of a
flow-through microscope at the end of the growth phase (50-60 cells per
image) than at the beginning (less than 10 cells per image). In that study,
the authors filtered the data using a 12-h asymmetric median to obtain a
smoother output (Havlik et al., 2013). Overall, cell concentration
influenced the accuracy of the results (p < 0.05). For concentrated
cultures, a dilution step might be necessary to correctly estimate
biomass concentration and identify contaminants. These results are in
line with those observed in systems such as FlowCam. When operating a
FlowCam at higher cell concentrations, overlapping has been observed,
which can lead to errors of up to 14.8 % when compared to traditional
microscopy methods (Alvarez et al., 2011). The dilution step might not
be necessary for larger microalgae such as H. pluvialis, where the system
was able to accurately calculate the cell concentration at a biomass
concentration higher than 1 g L.
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Fig. 1. Effect of the biomass concentration on the performance of HF3 when
analysing cultures of (A) C. sorokiniana and (B) H. pluvialis. HF3 and NCC refer
to HOLODETECT HiRes + FLUOR3 and Neubauer counting chamber, respec-
tively. The results are the average of five independent determinations
per species + SD.

The second objective of these initial trials was to determine the
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reproducible results. To accomplish this, multiple measurements of the
same sample were taken under consistent conditions, with a different
number of objects read for each sample (ranging from 375 to 6000). The
results are shown in Fig. 2. Overall, no differences were observed in the
CV values obtained for either species, being below 5 % in all the ana-
lysed samples. However, the number of read objects had an impact on
the CV, which decreased from 2.3 to 0.3 in C. sorokiniana cultures when
375 and 6000 objects were read, respectively (p < 0.05). Similarly, the
CV decreased from 3.9 to 1.9 in H. pluvialis cultures when 375 and 6000
objects were read, respectively (p < 0.05). For both species, no differ-
ences were observed between the CV obtained when measuring 1500
objects or more, suggesting that measuring 1500 objects per sample is
enough to achieve reproducible results. Even if a lower number of ob-
jects is counted, the maximum CV value obtained was below 5 %. The
number of objects analysed per sample is important because the higher
this value, the lower the statistical error reduction factor, which is
relevant in biological processes where higher cell concentrations result
in reduced effects. The accuracy of the results was also calculated by
comparing the number of objects read using HF3 and NCC. Overall, the
larger the number of objects analysed, the lower the discrepancy be-
tween the results obtained using HF3 and NCC. The same occurred when
using both C. sorokiniana and H. pluvialis. When just 375 objects were
analysed per sample, the difference between the data obtained using
HF3 was between 15 % and 20 % but only 10 % when 6000 objects per
sample were analysed (p < 0.05).

These first trials demonstrated that the higher the number of objects
detected, the greater the reproducibility of the results and the lower the
difference between HF3 and NCC. However, no statistically significant
improvements were observed when 6000 objects were measured
compared to 1500. Regardless of the number of objects analysed, the CV
was below 5 % in all the samples, indicating very high precision and
reproducibility. Nonetheless, one limitation identified was the need to
dilute the C. sorokiniana cultures since cell concentrations higher than
2 x 10° cells-mL™! led to lower accuracy; this is because cell overlap
made it challenging for the software to resolve individual cells. The same
problem was found by Sarrafzadeh et al. (2015) who compared different
methods for measuring biomass concentrations in microalgal cultures.
In the case of C. sorokiniana, a cell concentration of 2 x 10° to
3 x 10° cells-mL ! represents a biomass concentration of approximately
0.04-0.06 g L™}, which can be easily reached in laboratory-scale pho-
tobioreactors as well as in large-scale systems. Therefore, to use HF3 as
an online monitoring system in large-scale systems, an automatic dilu-
tion step might be needed depending on the species being produced.
This study demonstrated that the HF3 system has the capability to
distinguish between different microalgal species by training with species
specific image libraries. The system can be adapted to identify between
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species under different conditions, provided that the morphological
characteristics are sufficiently distinctive and adequate training data are
available.

3.2. Model development

Two different methodologies were followed: (i) developing mono-
culture models for each species and (ii) developing a co-culture model
where both species were considered. The models that were developed
using monocultures of C. sorokiniana and H. pluvialis cells were called
M1 and M2 respectively while the co-culture model where both strains
were considered independently within the same culture was called M3.
When developing M1 and M2, the objects counted as “others” were
mainly C. sorokiniana cells in the H. pluvialis M2 model, and mainly H.
pluvialis cells in the C. sorokiniana M1 model. The M1 and M2 models
were developed on the hypothesis that a model focused on a single
species would enhance the sensitivity to detect the target organism
while minimising potential particle noise interference. Conversely, M3
was developed based on the hypothesis that integrating both species into
one model would yield greater robustness in complex environments with
mixed species.

The imaging system that was used generates two complementary
types of data for each field of view: a holographic reconstruction and the
fluorescence signals emitted by the sample. Model M1 tended to over-
estimate the number of C. sorokiniana cells because it misclassified
noncellular particles and environmental debris as target cells. This
limitation was largely attributed to the model's reliance on chlorophyll
autofluorescence signals, particularly the red fluorescence (‘FLUO-
R_INTENSITY RED’) emitted, which is known to be susceptible to
interference by external fluorescence sources and particulate matter. As
previously reported, the red fluorescence channel cannot clearly
distinguish between chlorophyll signals and other fluorescent emissions,
making a precise classification difficult (Takahashi, 2019). The model
also relies on morphological parameters, including area and perimeter
(‘MASK_AREA’ and ‘MASK _PERIMETER’), focuses on the photosynthetic
pigment profile and cell dimensions characteristic of C. sorokiniana.

In contrast, the M2 model, developed using pure H. pluvialis cultures,
shows better specificity in detecting H. pluvialis cells, due to the signif-
icant difference in cell size compared to C. sorokiniana. The model was
trained with samples containing all the physiological phases of H. plu-
vialis, including motile and vegetative green cells, and non-motile red
cells. Recognising different sizes of H. pluvialis cells in all their phases,
the model incorporated a size-based filter with non-motile cells typically
being from 10 pm to 50 pm and motile cells typically 5 pm-30 pm
(Zhang et al, 2017) in diameter. The filter used MASK MI-
NENCCIRCDIAMETER (36.13 + 30.92 pm), which allowed the model to
effectively exclude small particles and contaminants, such as C. sor-
okiniana (which has a cell size less than 5 pm), from being misclassified
as H. pluvialis. Despite better discrimination, there were still challenges
in distinguishing between aggregates of small cells such as C. sorokiniana
and individual H. pluvialis cells. This showed that while size filtering
improved specificity, it was not sufficient to distinguish all the cells in a
mixed culture.

The third model, M3, was developed to address the limitations of the
M1 and M2 models. This was achieved by considering both C. sor-
okiniana and H. pluvialis as independent classes during model training.
This integrated model took advantage of multiple fluorescence channels
(‘FLUORL_INTENSITY_RED’ and ‘FLUOR_2/3’) in combination with a
wider range of morphological descriptors to achieve a more refined
discrimination between target cells and environmental noise. The inte-
gration of fluorescence profiles with detailed morphological parameters
was shown to yield superior results in the case of M3.

Comparative analysis demonstrated that M1 achieved high sensi-
tivity for C. sorokiniana but was prone to false positives, particularly in
contaminated samples, due to its reliance on fluorescence intensity. This
overestimation accords with well documented challenges faced in
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imaging-based cell counting systems such as imaging cytometers (e.g.,
FlowCam) operating in auto-image mode (Dashkova et al., 2017). In
contrast, M2 had greater specificity for H. pluvialis by focussing on size
and circularity parameters. Nevertheless, it still failed to adequately
distinguish aggregates from single cells. M3 outperformed both M1 and
M2 by integrating fluorescence and morphological features, dynami-
cally balancing parameter weighting to maintain precise classification
across different conditions, effectively reducing overestimation and
improving accuracy. In contrast, and in line with findings from
fluorescence-enhanced cytometry (Alvarez et al., 2014; Garmendia
et al., 2013; Owen et al., 2022), it was found that the combination of
multiple fluorescence channels with a higher number of morphological
parameters in the M3 model substantially improved counting accuracy.

Operational benchmarking showed that M1 and M2 offered faster
processing times (averaging 14.44 + 1.41 ms per image), while M3
required slightly longer (19.65 + 1.57 ms per image) due to its more
complex multiclass framework. Nonetheless, the additional computa-
tional load was justified by its superior accuracy. These findings high-
light critical trade-offs between model specialisation and generalisation.

3.3. Validation

The 3 models were validated using a series of cultures that contained
different cell concentrations of C. sorokiniana and H. pluvialis cells. HF3
calculated the total cell concentration in each case as well as the per-
centage of cells labelled as either C. sorokiniana or H. pluvialis. The re-
sults from the model validations are shown in Fig. 3. Fig. 3A and G shows
the accuracy of the three models in quantifying microalgal cell mono-
cultures containing only C. sorokiniana or H. pluvialis, while Fig. 3B-F
shows the accuracy of the different models in quantifying cells in a
polyculture containing both species over a range of different cell con-
centration ratios. When examining cultures containing only C. sor-
okiniana or H. pluvialis cells, all three models gave results comparable to
those of NCC. However, when the cultures consisted of a mixture of C.
sorokiniana and H. pluvialis, the cell concentrations were model depen-
dent (p < 0.05). Overall, the M1 model overestimated the total cell
concentration, especially in mixed cultures that had higher concentra-
tions of H. pluvialis (p < 0.05). For example, the difference between HF3
and NCC was around 100 % in cultures containing 10 % C. sorokiniana
and 90 % H. pluvialis and around 10 % in the culture containing 90 % C.
sorokiniana and 10 % H. pluvialis (p < 0.05). Still, this value was higher
than expected for a model developed using C. sorokiniana. In addition,
the M1 model identified small particles with no fluorescence as C. sor-
okiniana which led to an overestimate of the total cell count. In turn, the
M2 model accurately quantified the total number of cells similar to NCC.
As H. pluvialis cells are larger, the model did not identify small particles
as cells, unlike M1. No statistical differences were observed between M2
and NCC, where differences were less than 10 % for all the different
culture ratios that were tested. No differences were observed in cell
counts when using M3 and NCC, regardless of the culture used. Table 1
shows the accuracy of the models in quantifying the abundance of C.
sorokiniana and H. pluvialis in the different cultures. Overall, the models
were able to identify the presence of the different species, and which was
the dominant species in each culture. The M1 model was more accurate
in cultures where C. sorokiniana cells were the dominant species. The
difference between the C. sorokiniana cell concentration measured using
HF3 and NCC was approximately 5 % and 7 % in cultures where C.
sorokiniana cells represented 75 % and 90 % of the cells respectively. In
turn, when just 10 % of the cells were C. sorokiniana, the HF3 system
recognised 58.8 % of the cells as C. sorokiniana. As mentioned above, the
system recognised some particles with no fluorescence as C. sorokiniana
along with some H. pluvialis as groups of C. sorokiniana cells. The same
difference was observed when analysing the culture using the M2 model.
This model, which was developed using H. pluvialis monocultures, rec-
ognised that the culture containing 10 % C. sorokiniana cells was made
up of H. pluvialis (56.5 %) and other objects, including C. sorokiniana
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( A) (B) Fig. 3. Cell count in cultures of (A) 100 %
C. sorokiniana, (B) 90 % C. sorokiniana and 10 %
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(43.5 %). This problem was resolved when analysing the cultures using
M3—the model that was developed using mixtures of both C. sorokiniana
and H. pluvialis. In this case, the difference between results obtained
using HF3 and NCC was minimal, and the results had a positive corre-
lation for both the C. sorokiniana (p < 0.05; 0.9791) and H. pluvialis
(p < 0.05; 0.9790) cultures. The M3 model proved to be accurate,
especially when monocultures were analysed, identifying 99.9 % of the
C. sorokiniana cells and 95.9 % of the H. pluvialis cells in the mono-
cultures respectively.

The validation results presented above highlight the HF3 system's
strengths in identifying and quantifying microalgae in both

monocultures and polycultures. This shows that the HF3 system is a
valuable alternative to other image-based systems, such as FlowCam.
FlowCam relies on two-dimensional imaging, fluorescence triggering
and flow cytometry (Otdlora et al., 2023), which can limit its effec-
tiveness in dense cultures or when distinguishing between morpholog-
ically similar species. In contrast, HF3 combines high-resolution digital
holography with fluorescence. Although HF3 needs sample dilution for
small cells at high cell concentrations and takes longer to process com-
plex models, its accuracy and flexibility make it a strong contender for
monitoring microalgae.
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Model validation: Abundance of C. sorokiniana and H. pluvialis cells in monocultures and polycultures. The results are the average of five independent

determinations + SD.

Culture” M1 M2

M3

C. sorokiniana (%) Others (%)

Others (%)

H. pluvialis (%) C. sorokiniana (%) H. pluvialis (%)

100 %C 89.3+1.9 10.6 = 1.9 99.9 + 0.0 0.1+0.0 99.9 + 0.0 0.0 +£ 0.0
90 %C-10 %H 825+ 1.3 17.5+1.3 91.1+1.3 89+13 89.0 £ 3.9 10.9 +£3.9
75 %C-25 %H 70.7 £ 1.2 29.3+1.2 78.5+ 1.3 21.5+1.3 66.5 + 1.7 33.5+1.7
50 %C-50 %H 64.9 +£ 1.5 351+£1.5 66.9 &+ 2.1 33.1+21 409 £ 1.8 59.1 +£1.8
25 %C-75 %H 58.9 + 2.5 41.1 £2.5 48.3 +2.3 51.7 £ 2.3 13.6 = 1.4 86.4 + 1.4
10 %C-90 %H 58.83 £ 1.5 41.2+1.5 43.5+ 3.8 56.5 + 3.8 8.7+1.3 91.3+1.3
100 %H 25.6 £ 6.4 73.2 £ 5.6 38.9 £ 0.0 61.1 +8.4 41+£29 95.9 +£ 2.9

# C and H refer to C. sorokiniana and H. pluvialis, respectively. The percentages represent the relative abundance of cells of each species.

4. Conclusions

High-resolution holographic reconstruction combined with fluores-
cence microscopy was used to calculate the cellular concentration of
monocultures and polycultures of C. sorokiniana and H. pluvialis. This
technology permitted accurate cell counts in cultures of C. sorokiniana
and H. pluvialis and allows the quantification of the abundance of each
species independently. Three models called M1, M2 and M3 were
developed. M3, where the two species were considered independently in
mixed cultures, provided the best results, allowing the rapid quantifi-
cation of the abundance of each species to obtain cell concentration
results comparable to those of a Neubauer counting chamber. The main
limitation in C. sorokiniana cultures was the need for dilution, as high
cell concentrations led to inaccurate results. Future work will focus on
developing novel models that include other species, thus allowing the
full characterisation of cultures containing more than two species.
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